If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7b^2+10b-23=0
a = 7; b = 10; c = -23;
Δ = b2-4ac
Δ = 102-4·7·(-23)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{186}}{2*7}=\frac{-10-2\sqrt{186}}{14} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{186}}{2*7}=\frac{-10+2\sqrt{186}}{14} $
| (2x+10)×(3x-6)=50 | | -94=-n(5n+7) | | -2(3-2x)+3=5 | | 2-3x=-18+2x | | 20x-8=24x-60 | | 2m-3-5=m=10 | | -7/8y=-21 | | -96=8(n-4) | | u+20/17=4 | | 4x+2(-3x+6)=10x+8 | | 110=-2(6n-7) | | v/18+9=11 | | v18+9=11 | | -95=-6(1-8p)+7 | | 9x+6=144 | | x/2+3/4=15/4 | | -x-16=x+2 | | 5b+10=15 | | 4x2+44x−168=0. | | 4x(4x2+8x)=0 | | (-3x+3)^2=36 | | 6(2x2-5)=-(2x1+4) | | 6(x+8)+2=98 | | −2(3x−2.4)=−3(3x−2.4) | | 8x-14=2(x+8) | | 90=6(2n+3) | | -(3y+5)-(-2y-6)=6 | | 18+12t+-3t^2=0 | | −4x(4x2+8x)=0 | | 18+12t+-3t2=0,t | | 18+12t+-3t2=0 | | 2d−11=3 |